Clouds and Sensitivity in AM4/CM4

Levi Silvers, David Paynter, and GFDL CFMIP Team
CFMIP Meeting 2019

Outline

- Clouds in AM4
 - Focus on AMIP period (1979-2016)
 - Emphasis on Satellite simulators and observational products for GCMs.

Sensitivities of the Simulated Climate Across a Hierarchy of GFDL Models

Outline

- Clouds in AM4
 - Focus on AMIP period (1979-2016)
 - Emphasis on Satellite simulators and observational products for GCMs.

- Sensitivities of the Simulated Climate Across a Hierarchy of GFDL Models
 - AM4: Zhao et al., 2018 a,b. *JAMES*
 - CM4: Held et al., 2019 JAMES (in revision)
 - CM4, TCR & ECS: Winton et al., 2019 JAMES (submitted)

Total Cloud Fraction

- Bias according to ISCCP: -15.2 %
- Bias according to CALIPSO: -11.89 %
- For Similar comparisons with CAM4,
 CAM5, and E3SM see Kay et al., 2012;
 Zhang et al., 2019

Cloud Fraction (%) as seen by ISCCP and MODIS

- AM4 underestimates the low-level clouds, especially the optically thin ones
- Good job with thicker low-level clouds
- Too few mid-level clouds
- Observational uncertainty is large
- This partly justifies the motivation to focus on optimizing quantities like TOA fluxes rather than cloud amount.

See also Pincus et al., 2012; Klein et al., 2013

Vertical Structure of Clouds

- CALIPSO data: 2007-2016
- Upper level bias: -2.8 %
- Mid level bias: -4.9 %
- Low level bias: -10.2 %
- Most of the issues with low level clouds are between +/ 30

Optimizing AM4 to observations

It is easy to claim that GFDL, and most other GCM have the same problems in simulating clouds as they have had for a long time.

But it is important to realize that we could simulate better clouds, such as low-level tropical clouds... if that was our number one priority.

	Bias	RMSE
AM4.0	-0.77	7.35
AM3	-4.11	11.46
AM2.1	-3.16	12.93

TOA net SW down

AM4.0 TOA radiative fluxes: Cloud Radiative Effect

Loeb et al., 2009 Loeb and Doelling, 2018

Sensitivities of the Simulated Climate Across an ensemble of GFDL Models

Problems with Cess (uniform +2K warming)

Cess Climate Feeback Parameter

AM4 0.57 K W/m2 AM3 0.67 K W/m2 AM2.1 0.54 K W/m2

AM4 0.52 K W/m2 (fixed drop number)

- Contrary to former expectations, the Cess Feedback
 Parameter (Cess Sensitivity) is not proportional to TCR,
 and it is not constant in time.
- The 'Pattern effect' is important. Clouds and the ocean heat uptake depend on the pattern of SST

Andrews et al., 2018

Different measures of Sensitivity: The Semantic Wars

	Cess	TCR	Eff CS (1-150)	Eff CS (51-300)	Equilibrium CS
AM4/CM4	2.1K2.5K2.0K1.9K (fixed drop number)	2.1 K	3.9 K	5.0 K	?
AM3/CM3		2.0 K	4.0 K	4.3 K	4.8 K
AM2.1/CM2.1		1.5 K	3.4 K	?	?
AM4*		?	?	?	?
ESM2M		1.3 K	2.4 K	2.9 K	3.3 K

Stouffer et al., 2006; Randall et al., 2007; Andrews et al., 2012; Golaz et al., 2013; Paynter et al., 2018; Winton et al., 2019

Global and Time Mean Radiative Feedback Values

Initial comparison is consistent with Ringer et al. 2014

Global and Time Mean Radiative Feedback Values

Changing clouds in *amip-future4K* and *amip-p4K*?

- Clouds are almost identical between the p4K and Future 4K experiments.
- Mid-level clouds decrease with warming at most latitudes
- Upper-level clouds increase with warming poleward of 50
- In the Tropics warming slightly increases upper level clouds and decreases low level clouds.
- Very little difference in high-latitude cloud fraction between warming experiments.

Changing clouds in *amip-p4K* and *amip-m4K*?

- The response to +/- 4K SST perturbations is fairly symmetric
- Strong polar response of clouds to SST. We don't have good observations there. Important implications for polar amplification

Relative Changes of Cloud Fraction in *amip-p4K* and *amip-m4K*

- Changes at all heights
- At mid-levels there is a lack of change in tropical clouds
- Large differences in Arctic for low-level clouds

What are we learning?

- → AM4 simulates fewer than observed clouds at most levels and latitudes but primarily in the tropical low-level clouds
- → The latest GFDL models compare very well to observed TOA radiative fluxes, clouds are less constrained
- → The pattern of warming can change the sensitivity of the climate
- → The diversity of climate sensitivities can be discouraging...
 - Idealized models are a critical tool for understanding cloud responses
 - → High sensitivity GCMs: Will things get worse before they get better?
- → Can we develop a consensus on critical cloud constraints for model developers?

Thank You

Questions about GFDL CFMIP data? Please email me.

levi.silvers@noaa.gov

levi.silvers@stonybrook.edu

Cloud Radiative Effect

Black: Net CRE Blue: SW CRE

Yellow: LW CRE